
w

-'E  ;'Visual Artifacts

Discussion Leader: Bill' Gropp

Argonne National Laboratory

Report by: A. Louise Perkins

Massachusetts Institute of Technology

/

f-

The discussion began with Dr. Bill Gropp introducing the concept of visual artifacts in

numerical solutions. He presented examples of errors that appeared to be significant to the

human eye, but that were well below the error criteria for the problem, and did not impact

the quality of the numerical solution.

The discussion then focused on defining a model problem where visual artifacts could be

examined explicitly. .
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1 Introduction

At the ICASE Workshop on Heterogeneous Boundary Conditions a general optics problem

that allows interference was suggested for study. The large-scale interference pattern that

develops is quite sensitive to small perturbations in the boundary conditions. Hence it

seemed ideal for testing and observing errors due to grid interface effects introduced by

domain decomposition methods. Although the problem specification is somewhat arbitrary,

it is necessary to be specific in order to compare results because it is expected that several

researchers will explore this problem.

2 Error Measurements

The interference that we wish to test lends itself to error analysis using both a visual as well

as more standard numerical acceptance criteria. The more standard numerical criteria are

• propagation error

• Lx error

• L2 error

• Loo error

By propagation error we mean the phase difference between the computed location of the

wave front and the exact location of the same wave front.

Visually this problem gives rise to an interference pattern that can be compared for

sharpness as well as location. We are interested in seeing these differences across the artificial

interfaces introduced by the decomposition.



3 Motivation

Dr. Bill Gropp suggested we examine a problem that had visual meaning in its errors, to

allow studying the types of errors introduced between refined and coarse meshes at a more

intuitive level. He suggested an optics interference problem.

4 Optical Interference

Fermats' principle of least time is recast in Feynman et. al. [1] briefly from a quantum-

dynamical: perspective. By considering "rays of light" as photons, the ray path can be

considered a sum of the individual paths of the photons. The ray path is then defined by

the probability of each photon taking different paths.

Upon encountering a barrier that contains a wide slit, a wave will continue through

the slit almost undisturbed and geometric optics is a good model for ray behavior. But

when the slit is su_ciently reduced in size, the choices for photon paths are truncated, and

the probability distribution is altered, affecting the geometry of the wave front as it passes

through the slit.

This behavior is more easily understood by considering the simpler, less accurate, but

more intuitive, Huygens principle which states that "all points on a wavefront can be con-

sidered as point sources for the production of spherical secondary wavelets. After a time the

new position of the wavefront will be the surface of tangency to these secondary wa,celets",

as described in Halliday and Resnick [2]. Considering this simplified wave theory of light, a

barrier in a wave path with a slit on the order of the wave length will cause diffraction. That

is, the end points allowed to pass through the slit will no longer have symmetrical wavelets

on either side, and they will bend at the ends.

Placing two slits aside each other will replicate the limiting behavior twice, and the

resulting wave patterns will interact, causing interference. The interference pattern will be

visible, and dependent upon the original wave frequency. This interference pattern is quite

sensitive to phase errors, so that the choice of grid sizes influences the solution behavior.

This is the interesting aspect of this problem.

5 The Interference Pattern

Consider the wave equation
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Here A is the Laplacian. In the positive quadrant place two slits along the x-axis at locations

zl and z2, with

d = x 2 - x I .

Here zl and z2 are the mid-points of the two slits. Then for any point in the quadrant,

P = (zp, yp), let dl be the distance from zl to P, and d2 be the distance from z2 to P.
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Waves will arrive at P out of phase due to the difference in the path lengths dl and d_. The

maximum interference will occur when

Id2-dll =m_

where )t is the original incident plane wavelength and m is a nonnegative integer. The

minimum, of course, occurs at the half distances (m + _).

The size of our slits can now be specified. They should be at most of width ,k. A slit

width less than or equal to the incident wavelength is sufficiently small to diffract the wave

on a visible scale. This problem is interesting because generation of the large scale pattern

depends on how accurately the small scale dynamics has been captured about the slits.

6 Geometry

Here we assume that the problem has been normalized so that

zi = O,

We arbitrarily choose Zl - 12
following page in Fig. 1.
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Yb = O,

Yt = 1,

1
- --5)t, z2 = _+5_. This geometry is illustrated on the

7 Initial Conditions

The initial region, including all boundaries except the slits, should be quiescent (u = 0).

Prescribe a plane wave described by the following function:

291"

sin-X-(y- vt) (7.1)

where ), is the wavelength and v is the phase velocity. This impacts our domain along the

1 5.5)_] of the x-axis for all time t > 0. Here, the1 4.5)_] and [½ 4- 4.5_, _ 4-slits [½ - 5.5)_, _ -

equation reduces to
2r

sinT(-vt ). (7.2)

The phase velocity is known, allowing radiative boundary conditions to be defined. This

is done in the section 9.
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8 Exact Solution

The exact interference pattern is the superposition of the two waves. For any point P(::, V)

in the domain, the travel time to P will be different from the two slits." Let the tirrm from

slit a:i be ti. Then the value at P will be the sum of the Pi where

27r

e,(,,v) = ,inT(-v(t - t,))

for (t-ti) > 0 and zero otherwise. We note that the distance from slit zi to the point P(z,V)
is

= _ +

9 Boundary Conditions

All boundaries, except the slits which are prescribed with the incoming plane wave, evolve

with the solution. Any workable boundary conditions can be applied on these boundaries,

with the goal that these boundary conditions should influence the interference pattern as

little as possible.

For our prescribed incident plane wave we have the exact solution. However, prescrip-

tion of these exact boundary values on our numerical approximation of the solution could

cause the numerical approximation to degrade. Hence we recommend radiative boundary

conditions because we know the phase velocity exactly and hope that the numerical phase

velocity is quite close to the correct one. Then an open boundary condition can be used that

advects the interference pattern out of the domain by advancing the wave equation,

where n is the direction normal to the boundary.

10 Domain Decomposition Method

Our purpose in examining this test problem is to measure directly the effect of mesh refine-

ment and the resulting mesh interfaces on a known wave that is sensitive to phase errors,

while concurrently being able to visually display a meaningful picture of the effects of the

refinement-induced error on the solution.

The Coarse mesh must be able to adequately represent the interference pattern for the

visual comparisons. It should be no larger than Az -- Ay = ¼, and may need to be smaller.

The workshop suggested _. We suggest that x7, _ and _ all be tested. However, these

values are only apriori suggestions as we have not yet worked this problem.

The refined mesh must be able to adequately capture the diffraction behavior, _o that

the plane wave front "bends" as it passes through the slit. Given that the coarse and refined
I



meshes are sufficiently accurate, the phase errors introduced during the problem solution will

be a function of the sound speed on the two grids plus the coarse/refined grid interaction

errors.

Due to the geometry of the problem, non-adaptive local uniform mesh refinement is

adequate for the domain decomposition.

11 Discretization

We suggest a second order in space and time Leap Frog/Hopscotch discretization method
t

should be used. We anticipate beginning with _ = 0.1, and _ = 0.05,

12 Analysis

We expect that calculations for boundary errors and the ratio of mesh refinements will be

analyzed. These can be done both analytically and by comparison to an everywhere fine
mesh.
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